Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЦТ — математика
Вариант № 7025
1.  
i

Пло­щадь осе­во­го се­че­ния ци­лин­дра равна 36. Пло­щадь его бо­ко­вой по­верх­но­сти равна:

1) 36 Пи
2) 18 Пи
3) 72 Пи
4) 72
5) 36
2.  
i

Вы­чис­ли­те  дробь: чис­ли­тель: 3,2 плюс 0,8: левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби плюс дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: 0,1 конец дроби .

1) 48
2) 0,48
3) 4,8
4) 80
5) 0,8
3.  
i

Най­ди­те пе­ри­метр пра­виль­но­го ше­сти­уголь­ни­ка, мень­шая диа­го­наль ко­то­ро­го равна 4 ко­рень из 3 .

4.  
i

Пря­мо­уголь­ный тре­уголь­ник с ка­те­та­ми, рав­ны­ми 6 и 2 ко­рень из 7 , вра­ща­ет­ся во­круг оси, со­дер­жа­щей его ги­по­те­ну­зу. Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 2V, зна­ме­на­тель: Пи конец дроби , где V  — объём фи­гу­ры вра­ще­ния.

5.  
i

Точки A, B, C раз­де­ли­ли окруж­ность так, что гра­дус­ные меры дуг AB, BC, CA в ука­зан­ном по­ряд­ке на­хо­дят­ся в от­но­ше­нии 5 : 6 : 7. Най­ди­те гра­дус­ную меру угла ABC.

1) 100°
2) 70°
3) 50°
4) 60°
5) 140°
6.  
i

Най­ди­те сумму всех трех­знач­ных чисел, ко­то­рые при де­ле­нии на 4 дают в остат­ке 3, а при де­ле­нии на 6 и на 9 дают в остат­ке 1.

7.  
i

Ос­но­ва­ние ост­ро­уголь­но­го рав­но­бед­рен­но­го тре­уголь­ни­ка равно 4, а синус про­ти­во­по­лож­но­го ос­но­ва­нию угла равен 0,6. Най­ди­те пло­щадь тре­уголь­ни­ка.

8.  
i

Све­жие фрук­ты при сушке те­ря­ют a % своей массы. Ука­жи­те вы­ра­же­ние, опре­де­ля­ю­щее массу сухих фрук­тов (в ки­ло­грам­мах), по­лу­чен­ных из 60 кг све­жих.

1)  дробь: чис­ли­тель: 6000, зна­ме­на­тель: 100 минус a конец дроби
2)  дробь: чис­ли­тель: 60 левая круг­лая скоб­ка 100 минус a пра­вая круг­лая скоб­ка , зна­ме­на­тель: 100 конец дроби
3)  дробь: чис­ли­тель: 6000, зна­ме­на­тель: a конец дроби
4)  дробь: чис­ли­тель: 6000, зна­ме­на­тель: 100 плюс a конец дроби
5)  дробь: чис­ли­тель: 60 левая круг­лая скоб­ка 100 плюс a пра­вая круг­лая скоб­ка , зна­ме­на­тель: 100 конец дроби
9.  
i

На ри­сун­ке изоб­ра­жен тре­уголь­ник ABC, в ко­то­ром ∠ACB  =  41°, ∠AMN  =  107°. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те гра­дус­ную меру угла BAC.

1) 24°
2) 32°
3) 49°
4) 45°
5) 60°
10.  
i

Если  целая часть: 4, дроб­ная часть: чис­ли­тель: 6, зна­ме­на­тель: 17 :x= целая часть: 4, дроб­ная часть: чис­ли­тель: 5, зна­ме­на­тель: 8 : целая часть: 3, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 5   — вер­ная про­пор­ция, то число x равно:

1) 28
2) 32
3) 3,5
4) 3,2
5) 2,8
11.  
i

Пря­мые a и b, пе­ре­се­ка­ясь, об­ра­зу­ют че­ты­ре угла. Из­вест­но, что сумма трех углов равна 238°. Най­ди­те гра­дус­ную меру мень­ше­го угла.

1) 22°
2) 119°
3) 58°
4) 122°
5) 29°
12.  
i

Ко­рень урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та умно­жить на x= дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 5 в сте­пе­ни 5 умно­жить на 20 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та конец дроби равен:

1) 25 умно­жить на ко­рень 6 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та
2) 50 ко­рень из 2
3) 25 умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 50 конец ар­гу­мен­та
4) 4 умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 20 конец ар­гу­мен­та
5) 10 умно­жить на ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та
13.  
i

Четырёхуголь­ник ABCD впи­сан в окруж­ность. Если \angle BAC=75 гра­ду­сов, \angle ABD = 50 гра­ду­сов, то гра­дус­ная мера между пря­мы­ми AB и CD равна ...

14.  
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства 3 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка боль­ше левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те .

1) −1
2) 7
3) −7
4) 1
5) 14
15.  
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: |7x минус 22| минус |5x минус 14|, зна­ме­на­тель: левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка конец дроби мень­ше или равно 0.

16.  
i

Най­ди­те про­из­ве­де­ние наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний не­ра­вен­ства |16 плюс 6x минус x в квад­ра­те | плюс 4 мень­ше 4 умно­жить на |8 минус x| плюс |x плюс 2|.

17.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: x в квад­ра­те плюс 4x плюс 4, зна­ме­на­тель: x в квад­ра­те плюс 2x конец дроби : дробь: чис­ли­тель: x в квад­ра­те минус 4, зна­ме­на­тель: x в кубе конец дроби .

1)  дробь: чис­ли­тель: левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в сте­пе­ни 4 конец дроби
2)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x минус 2 конец дроби
3)  дробь: чис­ли­тель: x плюс 2, зна­ме­на­тель: x минус 2 конец дроби
4)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x плюс 2 конец дроби
5)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: 2 минус x конец дроби
18.  
i

Най­ди­те про­из­ве­де­ние боль­ше­го корня на ко­ли­че­ство кор­ней урав­не­ния  дробь: чис­ли­тель: 14, зна­ме­на­тель: x в квад­ра­те минус 8x плюс 22 конец дроби минус x в квад­ра­те плюс 8x=17.

19.  
i

Пусть (x1; y1), (x2; y2)  — ре­ше­ния си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x в квад­ра­те плюс y в квад­ра­те =3xy плюс 1,x минус y=2. конец си­сте­мы .

Най­ди­те зна­че­ние вы­ра­же­ния x1x2 + y1y2.

20.  
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром по­ка­за­но мно­же­ство ре­ше­ний си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний x\leqslant минус 1,4,1 минус 2x мень­ше 5. конец си­сте­мы .

1)  

2)  

3)  

4)  

5)  

1) 1
2) 2
3) 3
4) 4
5) 5
21.  
i

Ко­ли­че­ство целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка в квад­ра­те минус 4x минус 13, зна­ме­на­тель: левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка в квад­ра­те конец дроби боль­ше 0 на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус 4;5 пра­вая квад­рат­ная скоб­ка равно:

1) 3
2) 5
3) 4
4) 2
5) 7
22.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 6 умно­жить на левая круг­лая скоб­ка ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2 ко­рень из 2 конец ар­гу­мен­та минус ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 25 ко­рень из 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка ко­рень из 2 плюс ко­рень из 5 пра­вая круг­лая скоб­ка минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та .

23.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 11 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс 3 ко­рень из 3 , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс ко­рень из 3 конец дроби минус ко­рень из: на­ча­ло ар­гу­мен­та: 33 конец ар­гу­мен­та плюс дробь: чис­ли­тель: 16 ко­рень из 3 , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та минус ко­рень из 3 конец дроби

1) 20
2)  дробь: чис­ли­тель: 3, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та конец дроби
3)  дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс ко­рень из 3 конец дроби
4) 14
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 33 конец ар­гу­мен­та
24.  
i

Сумма кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 2x плюс 1 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та =4 минус x равна (равен):

1) 22
2)  дробь: чис­ли­тель: минус 11 минус ко­рень из: на­ча­ло ар­гу­мен­та: 181 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
3)  дробь: чис­ли­тель: минус 11 плюс ко­рень из: на­ча­ло ар­гу­мен­та: 181 конец ар­гу­мен­та , зна­ме­на­тель: 2 конец дроби
4) −15
5) 11
25.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 125 в сте­пе­ни x плюс 25 в сте­пе­ни x минус 12 умно­жить на 5 в сте­пе­ни x , зна­ме­на­тель: 5 в сте­пе­ни x левая круг­лая скоб­ка 5 в сте­пе­ни x минус 3 пра­вая круг­лая скоб­ка конец дроби .

1) 5 в сте­пе­ни x
2) 125 в сте­пе­ни x минус 4
3) 5 в сте­пе­ни x плюс 4
4) 5 в сте­пе­ни x минус 4
5) 2 умно­жить на 5 в сте­пе­ни x
26.  
i

Най­ди­те сумму кор­ней урав­не­ния  левая круг­лая скоб­ка x минус 64 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 4 в сте­пе­ни x минус 3 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка минус 64 пра­вая круг­лая скоб­ка =0.

27.  
i

Най­ди­те наи­боль­шее целое ре­ше­ние не­ра­вен­ства 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 11 пра­вая круг­лая скоб­ка умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка минус x минус 10 пра­вая круг­лая скоб­ка боль­ше 0,27.

28.  
i

Пусть A= левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 21 плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 21 пра­вая круг­лая скоб­ка 2 минус 2} пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 10,5 пра­вая круг­лая скоб­ка 21 умно­жить на ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка 21 минус ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 2 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 1,5 пра­вая круг­лая скоб­ка 21 пра­вая круг­лая скоб­ка плюс 4 ло­га­рифм по ос­но­ва­нию 4 в квад­ра­те 21.

Най­ди­те зна­че­ние вы­ра­же­ния 2A.

29.  
i

Ко­рень урав­не­ния

 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка дробь: чис­ли­тель: 7 минус 3x, зна­ме­на­тель: 2x минус 9 конец дроби плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка левая круг­лая скоб­ка 7 минус 3x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2x минус 9 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка =0

(или сумма кор­ней, если их не­сколь­ко) при­над­ле­жит про­ме­жут­ку:

1)  левая квад­рат­ная скоб­ка минус 2; минус 1 пра­вая круг­лая скоб­ка
2)  левая квад­рат­ная скоб­ка минус 1; 0 пра­вая круг­лая скоб­ка
3)  левая квад­рат­ная скоб­ка 0; 1 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка 2; 3 пра­вая квад­рат­ная скоб­ка
5)  левая круг­лая скоб­ка 3; 4 пра­вая квад­рат­ная скоб­ка
30.  
i

Най­ди­те сумму наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 52 пра­вая круг­лая скоб­ка мень­ше или равно 2 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка .

31.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби минус t пра­вая круг­лая скоб­ка умно­жить на синус левая круг­лая скоб­ка t минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: синус левая круг­лая скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби плюс t пра­вая круг­лая скоб­ка умно­жить на ко­си­нус левая круг­лая скоб­ка 5 Пи минус t пра­вая круг­лая скоб­ка конец дроби

1)  минус \ctg t
2) \ctg t
3)  минус тан­генс t
4)  тан­генс t
5) 1
32.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 7 минус \ctg262 гра­ду­сов30' плюс ко­рень из 2 минус ко­рень из 3 плюс ко­рень из 6 .

33.  
i

Най­ди­те сумму (в гра­ду­сах) наи­мень­ше­го по­ло­жи­тель­но­го и наи­боль­ше­го от­ри­ца­тель­но­го кор­ней урав­не­ния  синус 4x минус ко­рень из 3 ко­си­нус 2x=0.

34.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния 2x умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 4x плюс 45 конец ар­гу­мен­та =x в квад­ра­те плюс 4x плюс 45.

36.  
i

Ука­жи­те фор­му­лу для на­хож­де­ния n-го члена ариф­ме­ти­че­ской про­грес­сии (an), если a1  =  2, a2  =  5.

1) a_n= минус 3n плюс 5
2) a_n=3n плюс 5
3) a_n=3n минус 1
4) a_n=2n плюс 5
5) a_n=5n плюс 2
37.  
i

Функ­ция y= дробь: чис­ли­тель: 1, зна­ме­на­тель: синус x конец дроби не опре­де­ле­на в точке:

1)  минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби
2)  минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби
3)  минус 2 Пи
4)  минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 5 конец дроби
5)  дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 2 конец дроби
38.  
i

Ука­жи­те об­ласть зна­че­ний функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , за­дан­ной гра­фи­ком на про­ме­жут­ке [−2; 4] (см. рис.).

1) [0; 5]
2) [0; 1] ∪ [3; 5]
3) [0; 1) ∪ {2} ∪ (3; 5]
4) [0; 1] ∪ {2} ∪ [3; 5]
5) [0; 1) ∪ (3; 5]
39.  
i

На кру­го­вой диа­грам­ме по­ка­за­но рас­пре­де­ле­ние по­сев­ных пло­ща­дей под зер­но­вые куль­ту­ры в аг­ро­хо­зяй­стве. Сколь­ко гек­та­ров от­ве­де­но под овес, если рожью за­се­я­но на 175 га мень­ше, чем яч­ме­нем?

1) 560 га
2) 470 га
3) 490 га
4) 510 га
5) 525 га
40.  
i

На ко­ор­ди­нат­ной плос­ко­сти изоб­ра­жен па­рал­ле­ло­грамм ABCD с вер­ши­на­ми в узлах сетки (см.рис.). Длина диа­го­на­ли AC па­рал­ле­ло­грам­ма равна:

1) 9
2) 9 ко­рень из 2
3) 2 ко­рень из 2
4) 7 ко­рень из 2
5) 7
41.  
i

Сумма наи­боль­ше­го и наи­мень­ше­го зна­че­ний функ­ции

y= левая круг­лая скоб­ка 2 синус 3x плюс 2 ко­си­нус 3x пра­вая круг­лая скоб­ка в квад­ра­те

равна:

1) 8
2) 4
3) 16
4) 12
5) 2
42.  
i

Ав­то­мо­биль про­ехал не­ко­то­рое рас­сто­я­ние, из­рас­хо­до­вав 15 л топ­ли­ва. Рас­ход топ­ли­ва при этом со­ста­вил 6 л на 100 км про­бе­га. Затем ав­то­мо­биль су­ще­ствен­но уве­ли­чил ско­рость, в ре­зуль­та­те чего рас­ход топ­ли­ва вырос до 8 л на 100 км. Сколь­ко лит­ров топ­ли­ва по­на­до­бит­ся ав­то­мо­би­лю, чтобы про­ехать такое же рас­сто­я­ние?

43.  
i

От листа жести, име­ю­ще­го форму квад­ра­та, от­ре­за­ли пря­мо­уголь­ную по­ло­су ши­ри­ной 5 дм, после чего пло­щадь остав­шей­ся части листа ока­за­лась рав­ной 24 дм2. Длина сто­ро­ны квад­рат­но­го листа (в де­ци­мет­рах) была равна:

1) 9
2) 6
3) 8
4) 7
5) 10
44.  
i

Стро­и­тель­ная бри­га­да пла­ни­ру­ет за­ка­зать фун­да­мент­ные блоки у од­но­го из трех по­став­щи­ков. Сто­и­мость бло­ков и их до­став­ки ука­за­на в таб­ли­це. При по­куп­ке ка­ко­го ко­ли­че­ства бло­ков са­мы­ми вы­год­ны­ми будут усло­вия вто­ро­го по­став­щи­ка?

 

По­став­щикСто­и­мость

фун­да­мент­ных бло­ков
(тыс. руб. за 1 шт.)

Сто­и­мость до­став­ки

фун­да­мент­ных бло­ков
(тыс. руб. за весь заказ)

1240

1900

2255

1020

3300

бес­плат­но
1) более 22
2) от 15 до 45
3) от 23 до 58
4) менее 59
5) от 22 до 59
45.  
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­же­ны фи­гу­ры, сим­мет­рич­ные от­но­си­тель­но пря­мой l.

1)

2)

3)

4)

5)

1) 1
2) 2
3) 3
4) 4
5) 5